

Finding the Smoke Signal: Smoking Status Extraction & Classification

Myrthe Reuver (VU Amsterdam)

Radboud University

topicus

About this work and me:

- ResMA Linguistics & Communication Science, into clinical NLP.
- Thesis written at **Topicus**, software company in Deventer with **advisors Iris Hendrickx (Radboud!) and Jeroen Kuijpers (Topicus)**.
 - Data managing for general practitioners (GPs) in the Netherlands → data access;

- Since 2020, PhD candidate at the Free University of Amsterdam (VU) on diversity in news recommender systems (with advisors: Antske Fokkens and Suzan Verberne).
- Want to contact me for questions or ideas about my current or previous research?
Email me: [myrthe\[dot\]reuver@vu\[dot\]nl](mailto:myrthe[dot]reuver@vu[dot]nl) Twitter: [@myrthereuver](https://twitter.com/@myrthereuver)

The task

Predict, based on the free text in an EMR, the smoking status of a primary care patient.

“Meneer zegt niet te roken” → **smoking status: no smoker**
(mr. says he does not smoke)

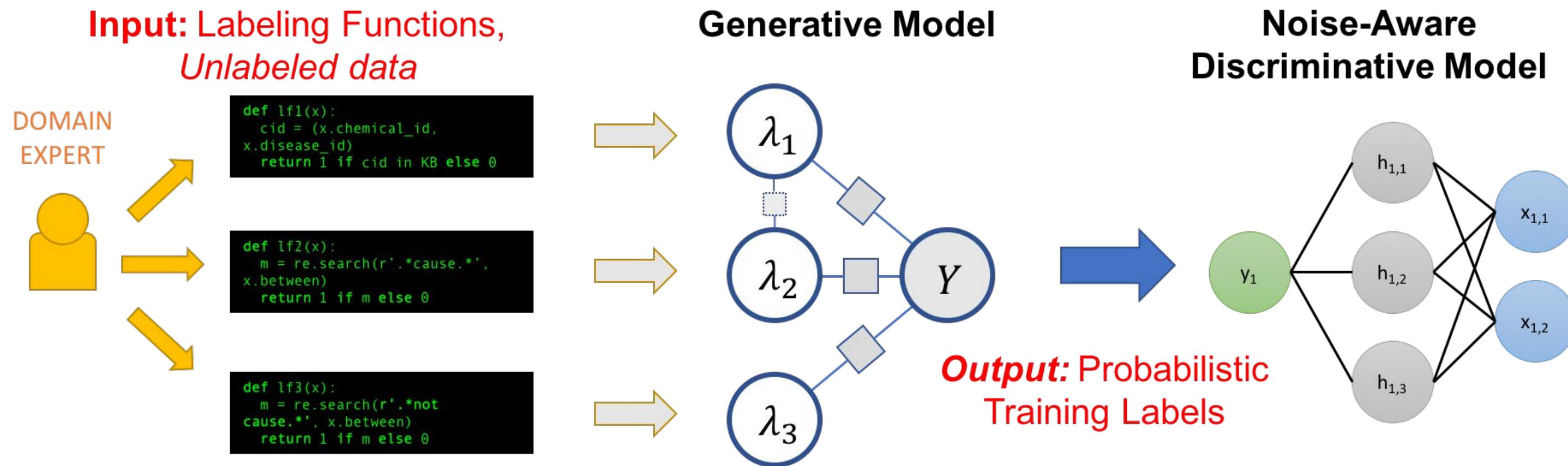
- Idea: **supervised learning**

Problem in Earlier Smoking Status Classification Work

- Small training sets e.g. Uzuner (2006) → 502 EMRs, Weng et. al. (2019) --> 475 EMRs → especially not enough training examples for neural models
- Sparsely labelled → roughly 2% of the Electronic Medical Records (EMRs)'s consultations has a recorded smoking status in our dataset
- Mainly tested on 'clean' benchmarking datasets in the literature (ib2b 2006 shared task, Mayo Clinic dataset in Wang et. al. (2019):
pro: open data
con: not realistic in real clinical settings, sparsely labelled data

Our goal: overcome this sparsely labelled data problem and improve over simple, rule-based models, on 'real' clinical data.

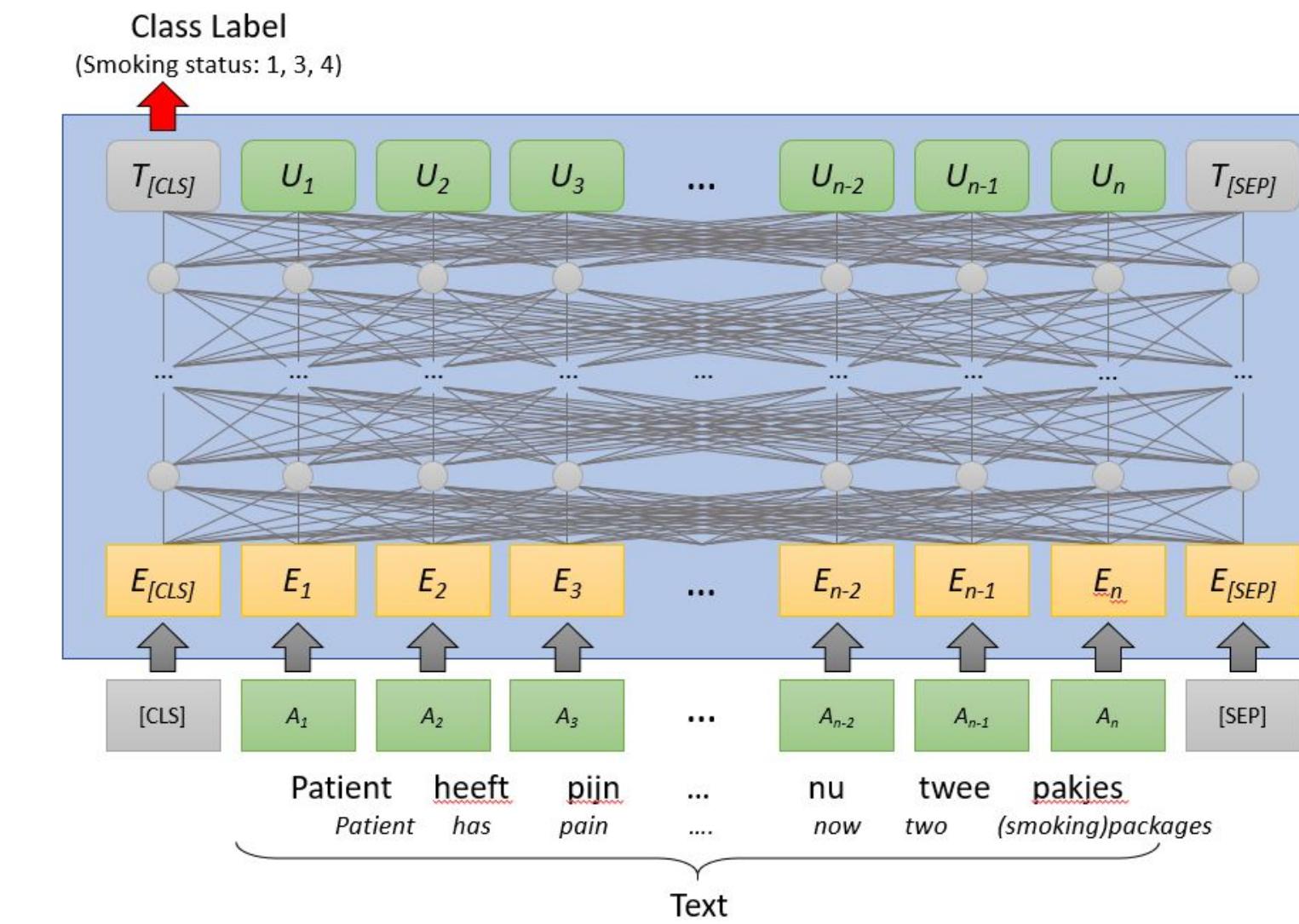
SNORKEL (Ratner et. al. 2017) → generating more training data



- works with Labelling Functions (LFs), heuristics or rule-based labellers
- These can be optimized on a small labelled **development set**
- LFs are **weighted** in a LabelModel
- exploiting (dis)agreements between LFs → each LF as an independent labeller (“Wisdom of the crowds”)

BERT & BERTje

- BERT (Devlin et. al. 2019): large-scale, pre-trained transformer trained on a **masking** task: predicting context from words.
- In this manner, **semantic information can be retained**, useful for newer tasks
- We use BERTje (de Vries 2019), 12 layer Transformer model trained on Dutch Wikipedia, SoNaR, and other data in a masking and sentence prediction task.



EMR representation

patient ID_GP ID	Sex	Age at consult	Age in 2020	SOEP text	date	smoking (1739)	Ketenzorg
9999_777	F	40	43	Mevrouw heeft buikpijn Translation: Mrs. has stomach pain	23-04-2017	4	0
8888_666	M	63	62	Is gestopt met pasta eten, is afgevallen. Has stopped eating pasta, has lost weight	05-07-2019	1	1

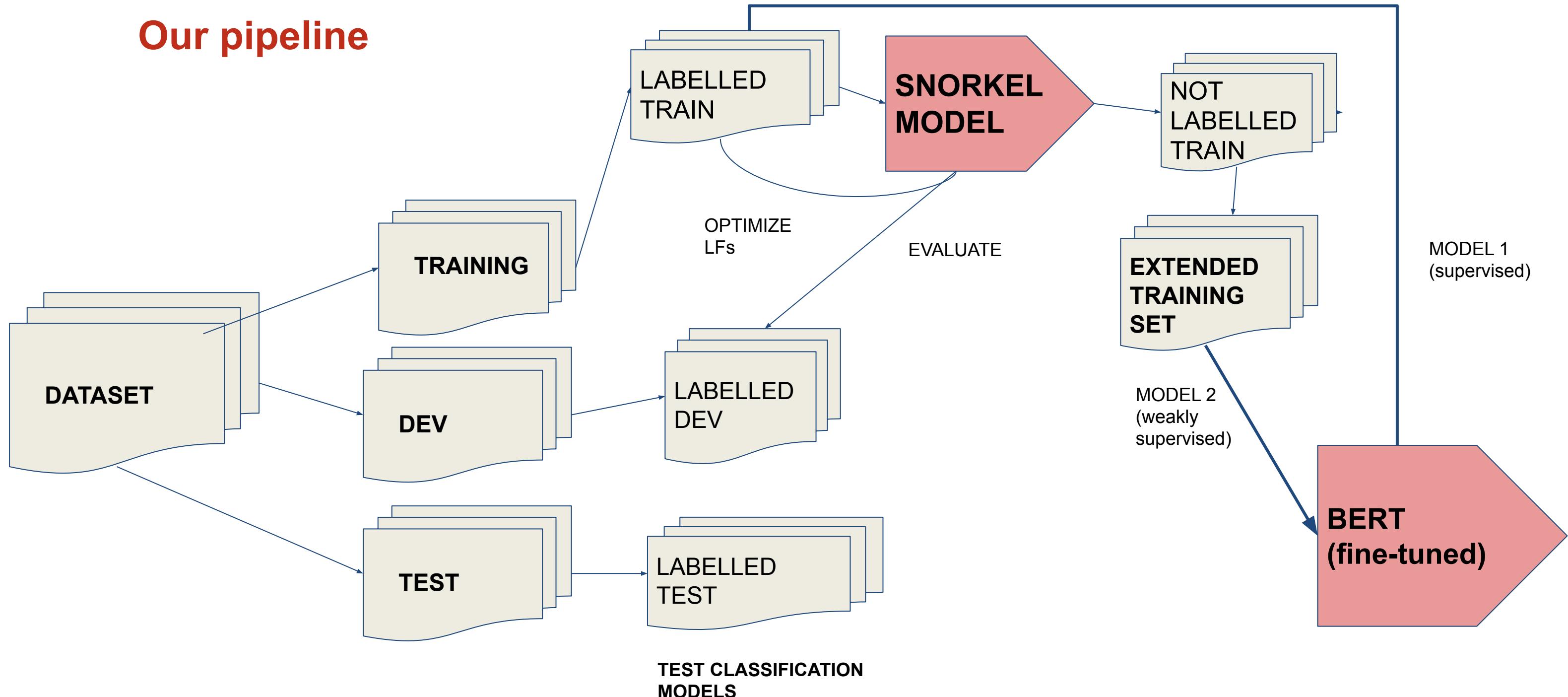
Dataset: size and labelled sub-set

	Training set	Development	Test
EMR representations	14.298	1.788	1.787

Table 6: The **labelled** datapoints in values used for the smoking status variable '1739' ("smoking"), as defined by the NHG (National GP Association)

	Training	Dev	Test
"smoker"	794	115	103
"never smoked"	2081	268	274
"ex-smoker"	2103	268	251
total labelled EMR representations	4.978	651	628

Our pipeline



Our comparison in smoking status classification

Compare:

- rule-based baselines (based on earlier work + Care Standard);
- BERTje;
- SNORKEL + BERTje (larger training set).

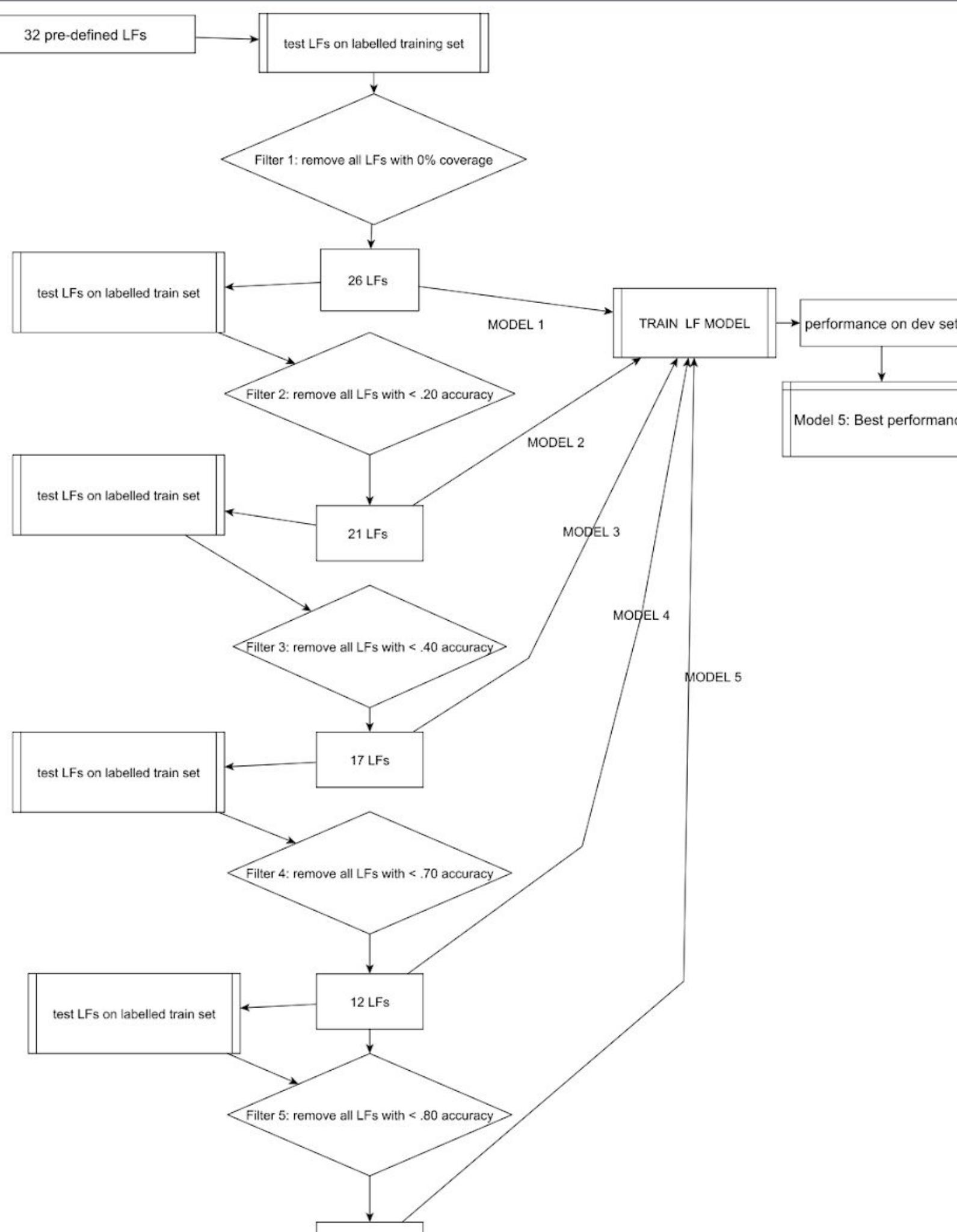
Evaluation:

- precision, recall, F1 → do we correctly predict smoking status?
- confusion matrices → When we incorrectly predict, what does the model predict?

Transfer Learning with BERTje: fine-tuning

Training process:

- first: tokenize dataset with BERTje tokenizer;
- add one linear layer to BERTje, predicting 3 classes (smoker, non-smoker, ex-smoker)
- training: 3 epochs, learning rate: 0.00005
→ more epochs = overfitting (training loss lower than development loss)



SNORKEL: training a LabelModel

Interesting results LFs:

- of all ‘quit smoking’ medicines mentioned in the health directive, only “champix” had any coverage;
- “roken” gave opposite result: the word was more often mentioned with people who never smoked (.45 accuracy) than with smokers, which was expected (.19 accuracy).

snorkel

Radboud University

topicus

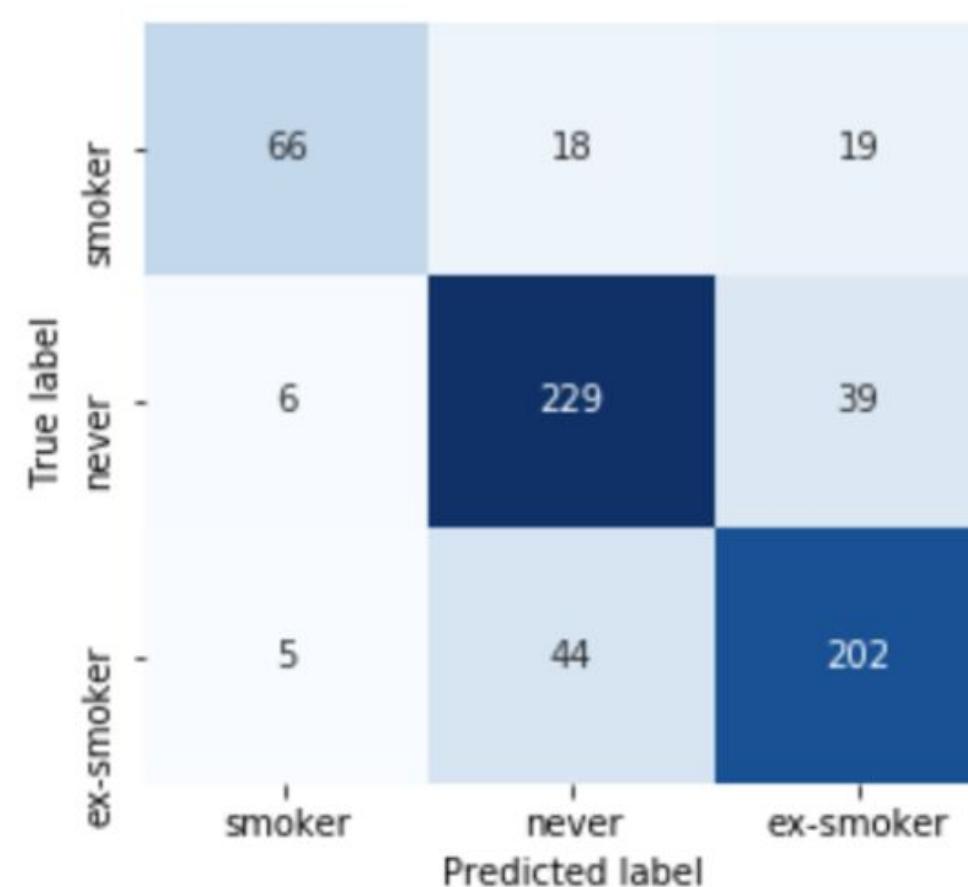
Results on the test set: overall and in-class

	Rule-Based	BERTje	SNORKEL + BERTje
precision (micro)	0.49	0.79	0.79
recall (micro)	0.43	0.79	0.79
F1 (micro)	0.55	0.79	0.79

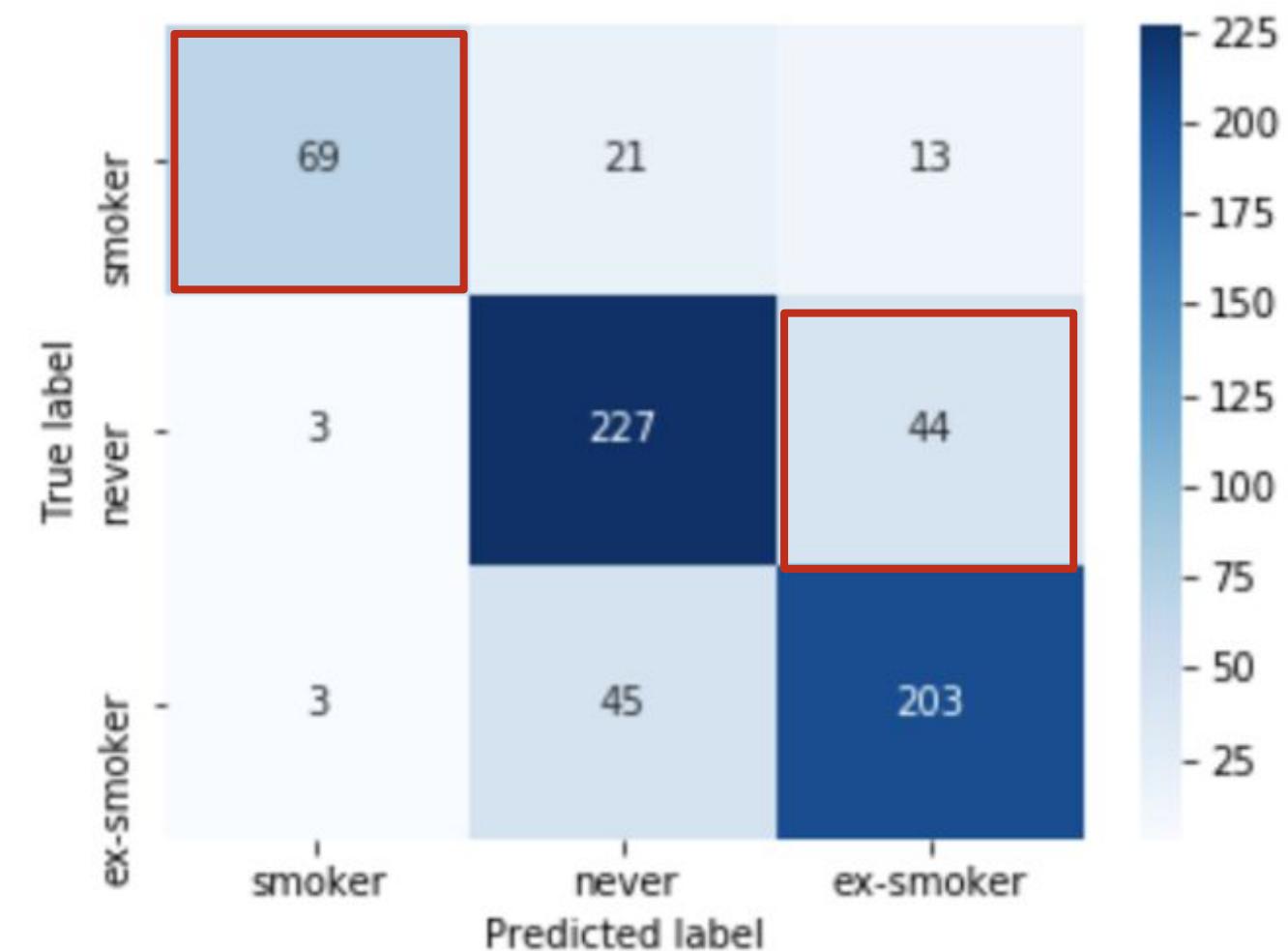
	BERTje			SNORKEL+BERTje		
	<i>4.978 training examples</i>			<i>5.490 training examples</i>		
	precision	recall	F1	precision	recall	F1
SMOKING	0.82	0.64	0.72	0.86	0.64	0.73
NON-SMOKING	0.74	0.76	0.75	0.79	0.84	0.81
EX-SMOKING	0.82	0.83	0.82	0.78	0.80	0.79

Confusion Matrices (on the Test set)

BERTje



BERTje + SNORKEL:



Things we learned

- real-world data is more complicated than shared task data

"How can we best automatically detect and classify the smoking status of primary care patients' EMR on the basis of the free text in GP doctor's notes, and overcome the sparsely labelled data problem?"

- Weakly supervised method works for some classes (SMOKING, NON-SMOKING), where there is in-class improvement, but no overall improvement over supervised learning;
- Rule-based method → does not seem to generalize well;
- A model trained on general language understanding (BERTje) is surprisingly not very bad at smoking status classification.

References

Uzuner, Ö., Goldstein, I., Luo, Y., & Kohane, I. (2008). Identifying patient smoking status from medical discharge records. *Journal of the American Medical Informatics Association*, 15(1), 14-24.

Wang, Y., Sohn, S., Liu, S., Shen, F., Wang, L., Atkinson, E. J., ... & Liu, H. (2019). A clinical text classification paradigm using weak supervision and deep representation. *BMC medical informatics and decision making*, 19(1), 1.

CBS. 2018. Helft van laagopgeleide 25- tot 45-jarige mannen rookt.
<https://www.cbs.nl/nl-nl/nieuws/2018/22/helft-van-laagopgeleide-25-tot-45-jarige-mannen-rookt>

Ford, E., Carroll, J. A., Smith, H. E., Scott, D., & Cassell, J. A. (2016). Extracting information from the text of electronic medical records to improve case detection: a systematic review. *Journal of the American Medical Informatics Association*, 23(5), 1007-1015.

Kreimeyer, K., Foster, M., Pandey, A., Arya, N., Halford, G., Jones, S. F., ... & Botsis, T. (2017). Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. *Journal of biomedical informatics*, 73, 14-29.

Palmer, E. L., Hassanpour, S., Higgins, J., Doherty, J. A., & Onega, T. (2019). Building a tobacco user registry by extracting multiple smoking behaviors from clinical notes. *BMC medical informatics and decision making*, 19(1), 141.

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G., & Nissim, M. (2019). Bertje: A dutch bert model. arXiv preprint arXiv:1912.09582.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2017, November). Snorkel: Rapid training data creation with weak supervision. In *Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases* (Vol. 11, No. 3, p. 269). NIH Public Access.